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ABSTRACT

Widespread cloud systems present new challenges
time and time again. An essential element of such en-
vironments is their management. The Infrastructure
as Code model has been gaining popularity for some
time. In work presented here, we have proposed an
agent-based approach to process execution within the
Infrastructure as Code approach and have performed
several numerical experiments. The work also includes
an original formal agent model of the system. The re-
sults obtained allow us to develop trade-offs regarding
computational demand and utilization.

INTRODUCTION

The infrastructure creation, management, and subse-
quent maintenance approach has changed significantly.
In the case of vast and complex environments imple-
menting even the smallest change often becomes very
problematic due to the sheer size of the infrastructure
and the human factor. The more changes must be made
manually, the greater the risk of making a mistake. The
solution to this problem is approaching Infrastructure
as Code.

Infrastructure as Code (IaC) makes it possible to
manage the entire infrastructure (e.g., virtual ma-
chines, load balancers, virtual networks, and other ser-
vices) by writing source code. For a modern company
- building IT infrastructure in the cloud is the default
method of managing all resources in the cloud. Cloud
computing offers many advantages such as scalability,
stability, security, and cost efficiency. Thanks to the
scalability of the cloud, we do not have to invest in
additional physical servers - we can flexibly increase
resources. Cloud computing also gives us stability be-
cause cloud components are monitored 24/7/365, and
additional mechanisms of the service provider ensure
the high availability of services.

Security is also a huge advantage. Responsibility in
the public cloud for security rests with the provider and
ourselves. For example, in the case of the Infrastruc-

ture as a Service (IaaS) model, the provider offers us
computing and network resources and is responsible for
their basic security. The client’s task is to secure the
operating system, applications, or data. In the case of
the Platform as a Service (PaaS), the provider deals
with the protection of basic computing services as in
the case of IaaS and is additionally responsible for the
runtime environment, operating system, and middle-
ware. The customer only needs to take care of access
and data. The last type is Software as a Service (SaaS).
In this model, the customer only needs to protect their
data and other users.

Infrastructure as Code began to gain immense pop-
ularity quickly with the introduction of the so-called
agile software development. In simple terms, agile soft-
ware development is a method based on iterative and
incremental programming for which the highest value
is cooperation and flexibility [12].

Infrastructure as Code makes it easier for Develop-
ment and Operations (DevOps) teams to perform com-
plex and complicated tasks such as configuration or in-
frastructure maintenance using code instead of man-
ual processes. The great advantage of Infrastructure as
Code is the speed of implementation and reduced risk
of making a mistake. With the Infrastructure as Code
approach, the written source code should be stored in
a code repository and tested for proper operation, sta-
bility, and security, just as in traditional software de-
velopment. The above operations use tools in Contin-
uous Integration (CI) and Continuous Delivery (CD)
processes, such as Jenkins, Ansible, Chef, Puppet, or
Terraform. Terraform is the most popular tool show-
casing the Infrastructure as Code idea. This tool is a
product of HashiCorp [16].

Terraform allows the user to create infrastruc-
ture and resources in cloud computing using HCL
(HashiCorp Configuration Language). The HCL lan-
guage is declarative and high-level; each code block de-
fines a resource. The primary assumption of this lan-
guage is syntax readability and the ability to interact
with other tools. Declarative language (compared to
imperative) describes what you want to get, not how
you want to get something.

The rest of the paper is structured as follows. Section
Related Work discusses the related work. We briefly de-
scribed implementing a cloud environment based on the
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IaC model in Section Principle of Operation. The next
section (IaC vs Traditional Infrastructure) presents the
differences between the traditional approach and the
IaC model. Within Section Agent-Based Simulator,
we presented the original formal agent model of the
simulator under test. Evaluation of the simulation is
presented in the experiments section. Finally, Section
Summary concludes conducted experiments and iden-
tifies potential opportunities for further work.

RELATED WORK

Accordingly, to [7], multi-cloud models account for
about 75% of the cloud market. Due to very high com-
puting capability, multi-cloud systems are called "Sky
Computing". Those models need special infrastruc-
ture tools like cloud orchestrators to handle information
flow. In [7], authors tested six cloud orchestrators cur-
rently most referenced in the literature: Cloudify, Heat,
CloudFormation, Terraform, Cloud Assembly, and the
TOSCA standard. During the literature review, they
found out that Terraform and Cloudify offer similar Sky
Computing scenarios, but the practical experiment re-
vealed that Terraform is outperforming Cloudify.

In [13], authors claimed that Infrastructure as code
(IaC) is widespread in complex cloud systems. The idea
of IaC is to deliver fast and reliable services to users.
Big companies like Facebook, Google, and GitHub cur-
rently utilize this idea. In the article, the authors tried
identifying potential flaws (like security breaches) and
research areas related to the IaC concept. They ana-
lyzed 32 articles and concluded that this topic is well-
studied; however, conducting more research on security
flaws is necessary.

In [14], authors described their own IaC system.
They proposed an architecture and implemented a
cloud benchmarking Web service. The presented model
was based on the assumptions of reusable and repre-
sentative benchmarks. Authors also claimed that clas-
sical benchmarking cloud services are cumbersome and
error-prone, whereas the presented IaC concept is re-
producible well-defined and easy to test.

Another solution utilizing the IaC concept was pre-
sented in [6]. The authors designed a search-based
problem-solving agent named YUMA. The algorithm’s
core is a search tree holding the state space and tran-
sition model. The article presents the search tree-
building algorithm and two additional algorithms de-
termining the minimal composition plan. Results pre-
sented in the paper indicate that YUMA fulfills require-
ments and may be helpful for cloud architects.

The Virtual Machine (VM) evaluation method is
necessary to choose the optimal VM for a particular
task. Usually, it is done via benchmarking or a black-
box search. In [11], authors presented their system
called Framework with Infrastructure-as-Code (IaC)
support For VM Evaluation (FIFE). This framework is
an easily-configurable abstraction layer separating the
searcher, selector, deployer, and interpreter. The whole
process can be automated with the usage of JSON files.
Results presented in the paper prove that the frame-

work does not influence search efficiency when VMs
are from different cloud providers and significantly im-
proves parallel search time efficiency.

In [10], authors investigated open-source cloud tech-
nology called OpenStack. They analyzed the architec-
ture, requirements, setup process, and related prob-
lems. The authors also analyzed the resource utility
(with a full load and without). The conclusion was
that OpenStack is mainly supported on Ubuntu and
demands RAM. However, it is a good platform for ed-
ucational and testing purposes and has an extensive
computer infrastructure. On a single machine, the loss
of performance is very significant.

A novel Multi-Agent System for Cloud Monitoring
(MAS-CM) model was described in [9]. The presented
solution is focused on performance and security dur-
ing gathering task results and scheduling in cloud sys-
tems. The authors proved that their model could pre-
vent unauthorized task injection and modification. It is
also optimizing the scheduling process and maximizing
resource utilization. The effectiveness of MAS-CM was
investigated using an evolutionary driven implementa-
tion of the Independent Batch Scheduler and FastFlow
framework. Results indicated that MAS-CM is increas-
ing the performance of the system.

PRINCIPLE OF OPERATION

Creating resources with Terraform consists of three
main steps: writing the resources we want to create in
HCL, generating a plan and running the tool (see: fig.
1).

I. Init and resource creation

The first stage involves gathering requirements, plan-
ning, and writing the source code. At this stage, the
supplier and services we care about are defined. The
provider’s definition and the resources we want to cre-
ate are placed in a file with the .tf extension (see: fig.
2).

II. Plan

After writing the code, the next step is to generate
the plan. Issuing terraform plan command Terraform
looks in local directories for configuration files. The
tool creates a plan and checks the current state of the
remote objects that will be introduced in the infras-
tructure.

III. Apply

The final stage of the workflow is terraform apply.
Without passing a saved plan file, Terraform asks for
approval of this plan and then takes the appropriate ac-
tion. When a saved plan file is handed over, Terraform
will perform the actions without asking for confirma-
tion.

In Terraform we deal with something called
Providers. Provider in Terraform is nothing more than
a special plugin allowing API interaction. This includes
cloud computing providers such as Amazon Web Ser-
vices, Microsoft Azure, Google Cloud Platform, or Or-
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Fig. 1: Terraform Workflow

Fig. 2: Use of provider

acle Cloud Infrastructure, and additionally providers
of various types of software available as services. The
abovementioned providers are just the four most pop-
ular providers. The list is much more extensive and
amounts to almost 3,000. The complete list of avail-
able providers can be found on the official Terraform
website.

Providers allow us to use different resources and
data sources that Terraform can manage. Without a
provider, infrastructure management using Terraform
is impossible; a given provider implements each type of
resource.

In the Infrastructure as Code idea, one must include
another vital tool - Ansible. This tool often needs clar-
ification with Terraform, and there is a fundamental
difference between them. Ansible is a tool written by
Michael DeHaan, currently developed by Red Hat Inc.
Ansible combines declarative configuration, as in the
case of Terraform, and additional procedural configu-
ration. The procedural configuration specifies the exact
state of our infrastructure.

A trendy tool that works like Terraform is Cloud For-
mation. It allows to creates and manages infrastruc-
ture; unfortunately, it is not as flexible as Terraform.
Terraform is entirely independent of the provider, un-

like Cloud Formation. The latter works only in the
Amazon cloud.

IaC VS TRADITIONAL
INFRASTRUCTURE

There are often debates about Infrastructure as Code
or Traditional Infrastructure. Which of these ap-
proaches seems more appropriate in today’s IT world?
As with any novelty, and not only in the IT industry
but in any other industry, we have many skeptics. Cre-
ating, managing, and storing infrastructure in the form
of code was something unacceptable to many. Writ-
ing source code has been chiefly a task for software
engineering teams. However, IT Administrators soon
discovered that this approach has no weak points - the
only downside is that they have to master the new tech-
nology. However, everyone more or less related to the
IT industry is used to constantly expanding their skills.

In addition, it must be taken into account that there
has long been friction between the teams of developers
and administrators. Developers were not very inter-
ested in where the application would be deployed and
what infrastructure resources a company or an external
client had. These conditions contributed to the creation
of the DevOps trend. Administrators often needed to
learn how to build or operate specific developer tools.
Therefore, a new role has arisen in the IT industry -
DevOps. DevOps engineers partly deal with tasks that
fell on the heads of programmers and some of the tasks
intended for IT Administrators. The combination of
these two distinct roles eliminated a seemingly impos-
sible conflict.

The power of Infrastructure as Code will be noticed
by anyone who has enjoyed creating and maintaining
infrastructure in the classic model. In the traditional
approach, all the work is done manually or with the
help of automation scripts, but with scripts, we can,
at most, configure something. We cannot create in-
frastructure from scratch - it will require manual work.
All three most important activities - provisioning of
servers, configurations of servers, and deployment of
software - can be automated using Infrastructure as
Code tools. In the event of a failure or migration to
another cloud computing provider, thanks to IaC, we
can easily recreate or migrate our infrastructure thanks
to the phenomenon of repeatability. The traditional
model, of course, still has its adherents. Most often,
these people need to be better acquainted with mod-
ern technologies or have yet to desire to learn them
thoroughly. The traditional model is, of course, still
valid. It will work better in small and uncomplicated
environments where the IT staff is not up to date with
technological innovations in the IT industry.

In summary - choosing the right concept depends
mainly on the organization’s requirements, needs, and
goals. Nevertheless, in most cases, without a doubt,
the only right choice will be the Infrastructure as Code
concept.
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Fig. 3: Components of Kubernetes

AGENT-BASED SIMULATOR

As part of this work, we have made several exper-
iments based on a dedicated simulator implemented
using the HASH platform [1], which provides an end-
to-end solution for safely automating decision-making.
Terraform-based Cloud Infrastructure Simulator ([4])
allows demonstrating how to generate a representation
of cloud infrastructure using the Infrastructure as Code
model. The simulator’s code is available under an MIT
license so that anyone can tailor the project to their
needs.

The simulator is based on the idea of a platform for
managing, automating, and scaling containerized ap-
plications - Kubernetes. As for the Kubernetes archi-
tecture, a Kubernetes cluster consists of a master node
called a control plane and workers nodes. The master
node distributes work to worker nodes, monitors the
status of the application and cluster itself, issues an
API (Application Programming Interface), and ensures
integration with the cloud provider. The task of worker
nodes is to perform the work assigned by the control
plane. A node is a worker machine in Kubernetes and
is the environment in which pods run (see: fig. 3).
So-called pods handle requests forwarded by users to
the cloud. Pods (which take their name from a pea
pod) are the most minor, short-lived computing units
that can share resources such as memory, storage, or
network. Notably, the contents of a Pod container are
always co-located and co-scheduled and run in a shared
context [2].

The HASH platform itself is based on an agent-based
paradigm. In the solution used, the agents are made
up of State, Behaviours, and Context. Compared to a
typical agent system (cf. [17], [18]), behavior can be
identified with actions, state with the agent’s internal
state, while context can be identified with the environ-
ment state. Based on the agent model presented in
[15], we propose the following formal multi-agent sys-
tem model embedded in the idea of a Terraform-based
Cloud Infrastructure Simulator:

MAS = {AG, ID, TP,K,ES,ACT, ST,GL}, (1)

where:
AG — a set of agents belonging to a multi-agent sys-
tem;
ID — a set of unique identifiers for agents;

TP — a collection of all agent types;
K — a set of all possible agent’s states;
ES — a set of all possible contexts;
ACT — a set of behaviors that agents can perform
within the context;
ST — a set of strategies implemented by agents;
GL — a set of agent objectives.

An agent (ag) is defined as follows:

AG ∋ ag = {id, tp, st, k, gl, α, β, γ}, (2)

where:
id ∈ ID — a unique system-wide identifier for the
agent;
tp ∈ TP — agent’s type;
st ∈ ST — agent’s strategy;
k ∈ K — current state of the agent;
gl ∈ GL — agent’s current objective;
α ∈ ACT — a behavior function that, based on the
current state and context of the agent, is updating the
internal agent’s state:

α : K × ES → M(K), (3)

where M denotes the space of probabilistic measures
over the set;
β — strategy selection function:

β : TP ×K → ST ; (4)

γ — a decision-making function which, based on the
strategy and objective, selects actions:

γ : ST ×GL → ACT. (5)

We can equate behaviors with actions in a typical
agent model. Internal states and agent contexts define
them. Only an agent can change its internal state. An-
other agent can induce a change in its state, but the
decision is up to the agent whose state it is. In the case
of contexts, as a rule, they are fixed; hence this model
does not contain a function that updates the context.

For more information on the modeling approach, see
[8].

The simulator also has several parameters and data
sources that control its operation. Different types of
instances from the Amazon Web Services cloud were
used for the experiment, and requests are generated
using accurate data - the distribution of requests shows
the percentage of requests during the day broken down
by each hour. The simulation has a rich database of
controlling parameters, including:
• number of daily requests; triangular item distribu-
tion that determines the duration of each running re-
quest;
• the number of CPU cores and gigabytes of memory
allocated to the pod;
• the number of gigabytes of memory and CPU cores
in compute node in the cluster;
• the auto-scaler automatically removes and adds
nodes (e.g., if the maximum utilization of the cluster
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Parameter Value
vCPU 48
Memory (GiB) 96
Instance Storage (GB) EBS-Only
Network Bandwidth (Gbps) 12
EBS Bandwidth (Mbps) 9,500

TABLE 1: C5.12xlarge instance specification

is exceeded, an additional node will be added to it,
the same is true when the utilization falls below the
minimum value - then one node is removed from the
cluster);
• the minimal number of nodes required to be in the
cluster;
• the initial number of nodes in the cluster;
• the time delay before a request to add a node to our
cluster is fulfilled.

EXPERIMENTS

A Kubernetes cluster was built for research. We used
Amazon EKS (Elastic Kubernetes Service), which al-
lows you to use Kubernetes and thus enables deploy-
ment, management, and scaling of container applica-
tions in the AWS Cloud. A typical Kubernetes cluster
consists of two parts, namely the control plane, and
nodes. Both parts are critical, and it is impossible to
say which is more important. The good news is that
in the case of the EKS service (similarly to Microsoft
in the case of the Azure Kubernetes Service), it is the
cloud computing provider, i.e., Amazon, who takes re-
sponsibility for the control layer. The customer only
deals with the issue of nodes.

Our cluster was built with 24 nodes - c5.12xlarge
instances (see: tab. 1). Amazon EC2 C5 instances
have much computing power, are great for distributed
analysis or scientific modeling, and are cost-effective
due to their low price-to-computing power ratio. The
c5.12xlarge instance has 48 vCPU and 96 GiB of RAM.
It has an Intel Xeon Platinum 8275L processor clocked
at 3.0 GHz.

An application for simulators and calculations was
installed on a working Kubernetes cluster. Because the
cluster is located in the Amazon cloud, we took advan-
tage of the possibility of scaling nodes and the mecha-
nism that automatically changes the number of pods.
The simulator based on the HASH platform allows us
to forecast the cloud resources we will need to keep
our application available and provide services at a high
level.

A simulation was conducted with the following daily
requests: 1,000, 2,000, and 10,000. Considering our en-
vironment and the application itself, according to the
simulator, at 10,000 received requests per day, seven
nodes will be enough (see: fig. 6). This balance is
also evident in the following graph showing the clus-
ter’s memory usage (see: fig. 7), where for the received
10,000 requests, we have seven nodes with 672 GiB of
memory, and in the case of the "Cluster CPU Usage"
plot (fig. 8) showing the total amount of RAM in the

Fig. 4: Number of nodes with 1,000 requests received

Fig. 5: Cluster memory usage for 1,000 requests re-
ceived

cluster and the current usage in a time step defined by
us.

Using the words "Kubernetes scaling" we cannot for-
get about changing the number of pods of a given De-
ployment. With the increase in traffic, it is necessary
to scale the application to handle a more significant
number of users, which can be seen in the example of
our experiment.

Another part of the experiment was to increase the
number of received requests and, more precisely, to dou-
ble our initial values. Our inputs were three values:
2,000, 4,000, and 20,000. As expected, with more re-
ceived requests, the application needed more comput-
ing power. With 20,000 requests received, the simula-
tor calculated that we need fourteen nodes representing
1,344 gigabytes of RAM and 672 vCPUs (see: fig. 6).
So, as can be seen, the number of resources needed has
slightly more than doubled. The same is also illustrated
by the number of pods (fig. 9). For 20,000 requests re-
ceived daily, the cluster’s RAM usage was around 640
GB at peak (see: fig. 7).
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Fig. 6: Number of nodes with 2,000, 4,000, 10,000, and
20,000 requests received

Fig. 7: Cluster memory usage for 2,000, 4,000, 10,000,
and 20,000 requests received
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Fig. 8: Cluster CPU usage for 1,000, 2,000, 4,000, and
10,000 requests received

Fig. 9: Number of pods for 1,000, 2,000, 4,000, and
10,000 requests received
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SUMMARY AND FUTURE WORK

Thanks to the simulator used in our experiment, we
can estimate what resources we will need depending on
the load. Having an application and infrastructure in
the cloud is essential, so are costs and their ongoing
monitoring - we can also estimate and forecast poten-
tial costs depending on several factors and finding a
trade-off between performance and cost. Our research
balances the need for and delivery of computing re-
sources.

In the future, this simulator can also be expanded
with the resources of other cloud computing providers
(e.g., Azure, Google Cloud Platform, Alibaba Cloud, or
Oracle Cloud). The simulator can also be helpful for
a private cloud. It can be easily adapted to our needs.
We also plan to implement various optimization mech-
anisms for modeling problems of large-scale computing
environments based on the IaC paradigm.
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